skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Girfoglio, Michele"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Numerical stabilization techniques are often employed in under‐resolved simulations of convection‐dominated flows to improve accuracy and mitigate spurious oscillations. Specifically, the evolve–filter–relax (EFR) algorithm is a framework that consists of evolving the solution, applying a filtering step to remove high‐frequency noise, and relaxing through a convex combination of filtered and original solutions. The stability and accuracy of the EFR solution strongly depend on two parameters, the filter radius and the relaxation parameter . Standard choices for these parameters are usually fixed in time, and related to the full order model setting, that is, the grid size for and the time step for . The key novelties with respect to the standard EFR approach are: (i) time‐dependent parameters and , and (ii) data‐driven adaptive optimization of the parameters in time, considering a fully‐resolved simulation as reference. In particular, we propose three different classes of optimized‐EFR (Opt‐EFR) strategies, aiming to optimize one or both parameters. The new Opt‐EFR strategies are tested in the under‐resolved simulation of a turbulent flow past a cylinder at . The Opt‐EFR proved to be more accurate than standard approaches by up to 99, while maintaining a similar computational time. In particular, the key new finding of our analysis is that such accuracy can be obtained only if the optimized objective function includes: (i) aglobalmetric (as the kinetic energy), and (ii)spatial gradients' information. 
    more » « less
  2. Within OpenFOAM, we develop a pressure-based solver for the Euler equations written in conservative form using density, momentum, and total energy as variables. Under simplifying assumptions, these equations are used to describe non-hydrostatic atmospheric flow. For the stabilization of the Euler equations and to capture sub-grid processes, we consider two Large Eddy Simulation models: the classical Smagorinsky model and the one equation eddy-viscosity model. To achieve high computational efficiency, our solver uses a splitting scheme that decouples the computation of each variable. The numerical results obtained with our solver are validated against numerical data available in the literature for two classical benchmarks: the rising thermal bubble and the density current. Through qualitative and quantitative comparisons, we show that our approach is accurate. This paper is meant to lay the foundation for a new open-source package specifically created for the quick assessment of new computational approaches for the simulation of atmospheric flows at the mesoscale level. 
    more » « less
  3. We present a stabilized POD–Galerkin reduced order method (ROM) for a Leray model. For the implementation of the model, we combine a two-step algorithm called Evolve-Filter (EF) with a computationally efficient finite volume method. In both steps of the EF algorithm, velocity and pressure fields are approximated using different POD basis and coefficients. To achieve pressure stabilization, we consider and compare two strategies: the pressure Poisson equation and the supremizer enrichment of the velocity space. We show that the evolve and filtered velocity spaces have to be enriched with the supremizer solutions related to both evolve and filter pressure fields in order to obtain stable and accurate solutions with the supremizer enrichment method. We test our ROM approach on a 2D unsteady flow past a cylinder at Reynolds number 0≤Re≤100. We find that both stabilization strategies produce comparable errors in the reconstruction of the lift and drag coefficients, with the pressure Poisson equation method being more computationally efficient. 
    more » « less